An Effective Decomposition-Based Stochastic Algorithm for Solving the Permutation Flow-Shop Scheduling Problem

نویسندگان

چکیده

This paper presents an effective stochastic algorithm that embeds a large neighborhood decomposition technique into variable search for solving the permutation flow-shop scheduling problem. The first constructs as seed using recursive application of extended two-machine In this method, jobs are recursively decomposed two separate groups, and, each group, optimal is calculated based on Then overall permutation, which obtained by integrating sub-solutions, improved through technique. same technique, one also paradigm and can find arrangement subset jobs. employed search, concept critical path has been used to help process avoid unfruitful computation arrange only promising contiguous parts permutation. fashion, leaves those already have high-quality arrangements concentrates modifying other parts. results computational experiments benchmark instances indicate procedure works effectively, demonstrating solutions, in very short distance best-known within seconds typical personal computer. terms required running time reach solution, outperforms some well-known metaheuristic algorithms literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

An Iterated Greedy Algorithm for Solving the Blocking Flow Shop Scheduling Problem with Total Flow Time Criteria

In this paper, we propose an iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time minimization objective. The steps of this algorithm are designed very efficient. For generating an initial solution, we develop an efficient constructive heuristic by modifying the best known NEH algorithm. Effectiveness of the proposed iterated greedy algorithm is t...

متن کامل

NNMA: An effective memetic algorithm for solving multiobjective permutation flow shop scheduling problems

The permutation flow shop scheduling problem is addressed in this paper. Two objectives, minimization of makespan and total flow time, are considered. We propose a memetic algorithm, called NNMA, by integrating a general multiobjective evolutionary algorithm (NSGA-II) with a problem-specific heuristic (NEH). We take NEH as a local improving procedure in NNMA and propose several adaptations incl...

متن کامل

MILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints

In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...

متن کامل

A cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling

Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2021

ISSN: ['1999-4893']

DOI: https://doi.org/10.3390/a14040112